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Reaction-diffusion waves of advance in the transition to agricultural economics
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In a previous papelr). Fort and V. Madez, Phys. Rev. LetB2, 867 (1999], the possible importance of
higher-order terms in a human population wave of advance has been studied. However, only a few such terms
were considered. Here we develop a theory including all higher-order terms. Results are in good agreement
with the experimental evidence involving the expansion of agriculture in Euf§i€63-651X99)19110-4

PACS numbe(s): 87.10+e, 05.40-a, 05.60.Cd, 47.76:n

I. INTRODUCTION based on a linearization of the type of E§) for the diffu-

sion fluxJ instead of the heat flug,
Allowance of a time delay between cause and effect

yields equations that are more reasonable from a conceptual L. .. (95()21)
perspective. For example, the Fourier heat conduction equa- J(x,t+7)~J(x,t)+Y I (4)
tion

.- .. which ignores additional terms in the expansion. For this
a(x,t)=—AVT(x,t) (1) reason, it is important to develop more general models. This
- is one of the purposes of this paper, which has nevertheless

predicts that a temperature gradiéfit causes the instanta- peen inspired by a specific application that we shall now
neous appearance of a heat flyx\ is the thermal conduc- summarize within its proper context.
tivity, X is the position vector, antlis the tim@. This physi- In the last few years, a lot of interest has been focused on
cally unpleasant property was noted long ago. Authors sucke application of time-delayed models to systems in which
as Cattaneq1] and Vernotte[2] proposed to avoid it by diffusion and reaction processes coexist. Applications in-
letting the heat flux be retarded with respect to the temperaclude chemically reacting systeri1,22 as well as many

ture gradient, i.e., using a relationship of the form biological applications such as epidemi@3], forest fire
models[24], and population growth25]. Most authors have
q(X,t+Y)=—AVT(X,1), (2)  presented formalisms based on simplifications which are es-

sentially of the type of Eq(4). This leaves doubt as to the
whereY plays the role of a delay or relaxation time. Such apossible importance of the additional, neglected terms. In
simple modification leads to generalized heat conductiomparticular, application of such a model to the expansion of
equations that have been used in the description of secorttiman populations has very recently [@] to corrections
sound in crystal§3]. Similarly, time-delayed equations for higher than 40% with respect to the usual, nondelayed
viscous flow[4], diffusion [5], and heat radiatiof6] have = model. Since this modification is very large, there is no rea-
been considered, as well as for electrigdland chemical8]  sona priori to expect that keeping only a first-order correc-
systems. Applications include shear wa\@3, ultrasound tion in the serieg4) will give quantitatively trustworthy re-
propagation[10], shock waves[11], pores in biological sults. It is thus necessary to analyze carefully the role of all
membraneq12], rheology[13], etc. It is worth stressing, higher-order terms, and this is our main purpose here. We
however, that simple theories based on replacing, e.g., th&ill focus our attention on a specific application of the
left-hand side in Eq(2) by its first-order Taylor expansion model, namely, the population expansion in the European

[1], Neolithic transition, in order to determine whether or not the
. conclusions in Ref.26] remain valid or not when additional
- - > aq(x,t) terms are included. However, we would like to remark that
X, t+Y)~q(x,)+Y a (3) the formalism we will present here is valid in general, and
should be useful in a variety of systems, specially those deal-
usually provide only a qualitatively valid descriptigttid—  ing with time-delayed approaches to reaction-diffugiah—

16]. Such approaches lead to the so-called telegrapher equas).

tion (see Sec. )| which has the appealing property that it  The plan of the paper is as follows. In Sec. Il, we derive
predicts a finite speed for the propagation of signalsa time-delayed reaction-diffusion equation including terms
[14,15,17. A special case of time-delayed transport is relax-of up to an arbritrarily high order. Its wave-front solutions
ational diffusion, which has been applied to turbulefiSf  are analyzed in Sec. Ill. This generalizes the theory pre-
propagation of light in turbid medigl8], diffusion in glassy sented in Ref[26]. In Sec. IV, we explain why such an
polymers[19], photon emission from stellar atmospheresequation is a reasonable approach to the modeling of human
[17], Taylor dispersion20], etc. Again, these approaches areexpansiongwith special emphasis on the transition to agri-
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cultural economics we briefly survey how the parameters in tion expansion. The same problem arises if one resorts to
the equations are determined experimentally, and find gooderivations based on the assumption of a correlated random
agreement between the predictions of the new equations anaalk: in this caseY can be related to a parameter character-
the rate of spread of agricultural communities as determineizing the correlation between successive walka]. ThusY
experimentally from the archeological record. Sec. V is de-may be estimated in the case, e.g., of cell or insect dispersion

voted to concluding remarks. because individual trajectories can be observed directly in
such case$33]. However, this is not possible for human
Il. GENERALIZED REACTION-DIFFUSION EQUATION expansions that took place thousands of years ago. This is

why in Ref.[26] we presented a new derivation of ).

The usual approach to reaction-diffusion is based on thene starting point was to write the total change in the popu-
so-called Fisher equatiof27], in fact already derived by |ation density as a sum of a contribution due to migrations
Luther in 1906[28]. This equation can be obtained from (i e diffusion, and another contribution due to population

Fick’'s law of diffusion, namely, growth (i.e., “reactions”),
J(x,t)=—-DVp(x,t), (B)  [p(x,y,t+7)—p(x,y,t)]ds=[p(x,y,t+7)—p(X,y,t)]nds
where D is the diffusion coefficient angb is the particle
concentration. This is the diffusion analog to Fourier’s heat Py t+7) = p(xy, 1) ]gds,
conduction equatiofl). When Eq.(5) is combined with the 9)
mass balance equation, one obtains the well known result
(see, e.g., p. 236 in Ref29]) wherep(x,y,t) is the population densitymeasured in num-
ber of families per square kilomejex andy are Cartesian
ap 5 coordinatesy is the mean time between two successive mi-
57 ~ DV p+F, (6)  grations, andds=dxdy is a differential of surface. In Ref.

[26] we derived the simplest possible model leading to a
which is Fisher’s equation. Hefe=F(p) is the source func- time-delayed extension of Fisher's E) by writing the first
tion corresponding to reactive processes in the system. Fisignd third terms in Eq(9) as
er’'s derivation of Eq(6) was inspired by the problem of the
spread of advantageous gerj@3]. It was rederived more ap 12 p
recently by Noblg30] for application to the propagation of [p(x,y,t+7)—p(X,y,t)]ds~ Tt S ds,

. . . . at
epidemics. Although the use of time delays in homogeneous
(ﬁp=5) models of population dynamics is well known gnd
[29,31], only recently have some authdrd5] applied time

delays to inhomogeneous systems by replacing(Eqwith 2

q 7 JF q

o [Py, t+7)—p(x,y,) Jgds~| 7R+ - —-1ds,

- - dJ(x,t) - -

I H+Y ot ~—-DVp(x,0), @) respectively, withF the source function corresponding to

population growth. As explained in Sec. |, it is necessary to
in complete analogy to Eq$2) and (3). This leads to(see  determine to what extent these approximations are reliable. It

Sec. II.B in Ref.[25]) seems reasonable to try to conserve the simplicity of the
model in Ref[26] as far as it is possible to do so. Thus we
ap #p OF will simply keep an arbitrary numbeX of terms in the ex-
—+Y—=DV2p+F+YE, (8) pansions above, i.e., we rewrite EH§) as

N N _
which in the absence of time delay (~0) reduces to the D ™ p ™ I

Fisher equatior{6), whereas folF =0 it becomes the teleg- &4 k! gk =[Py, t+ 1) =p(xy.0) Inds+ kzl Kl k=1
rapher’s equatiofl4], as mentioned in Sec. |. This summa- (10)
rizes the derivation presented in REZ5]. Here we want to

stress that such a phenomenological derivation, althougtvhere 9°F/9t°=F. It remains to calculate the migration
completely consistent and in the spirit of the classical workterm. We follow Einstein’s approach to diffusidid4] by

in Refs.[1,2], does not yield a microscopic interpretation for letting Ax and Ay stand for the changes in the position co-
the delay timeY. It means that on this basis we cannotordinates of a given family during the time interval and
determine the value of when dealing with, e.g., a popula- writing the migration term as

[p(X,y,t+7)—p(X,y,t)]ds= dsJ'j: fj:p(er AX,y+Ay,t)p(Ax,Ay)dAxdAy—dsp(x,y,t), (11
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where ¢(Ax,Ay) is the fraction of those families lying at and
timet in an areads, centered atX+ Ax,y+Ay), such that
they are at time+ 7 in an areads, centered atx,y). The

following equations hold for the functionp(Ax,Ay) f+mf+m¢(Ax,Ay)dAdiy:1_ (13
[34,26: o J e

AX,Ay)=p(—AX,A _ . .
HAXAY)= ¢~ Ax.AY) We replace the right-hand side in Ed.1) by its Nth-order
=p(AX,—Ay)=¢d(—Ax,—Ay), (12)  Taylor expansion and make use of Ef3),

r?pA r?pA (k)dA dA 14
x X+W y xdAy. (14

_% +o [+ 1
[p(xvy1t+7)_p(xvy!t)]mds_k=l J‘iw fﬁm d’(AXvAy)F

In Ref.[26] the approximatiolN=2 was analyzed, i.e., only Nk Mp (Ax® [ d*p  a%p
terms up to = —t —

Gk gk 20 | g2 gy?
22/ 4 4 4
op . aop \® ap &P Pp ., (AxA?(a'p d'p  d'p
— — =— — — +———4+6——+—|+
(ax Ax+ 2y Ay) e Ax +2&xay AxAy+ Py Ay a1\t Caxeay? oyt
N ™ K IF
were considered. Here we include an arbitrary number of +k—1 K k1 (16)
such terms, which can be written analogously. After insert- T
ing Eq.(12) into (14), Eq. (10) becomes
A. Hyperbolic equation (N=2)

Nk ak 1 2 52 Equation(16) has been derived from the series expansions
> 7P _ _( <AX2>_p +(Ay?) _p) in Egs.(10) and(14). A possible approximation is to include
skl ogtk 21 ax? ay? only terms of up to second order, i.e., to neglect time and

L . . space derivatives of third and higher order. Then we recover
J'p J'p from Eq. (16) the hyperbolic reaction-diffusion equation de-
— ¥ 272
Tar| (A — g TE(AxAY >¢9Xzayz rived in Ref.[26],
a*p * g1 p T Ip Pp  Ip T JF
4 —_— PRPE —_—— - o = I I - T
+(Ay )&y4)+ +k21 K it (15) i Revialliewras o Rt —- (1D
which is Eq.(8) with a diffusion coefficient and relaxation
where time given by

1 +oo [+
o [T 2 D:4—J f $(Ax,Ay)A%dAxdAy
(A= | ¢(Ax,Ay)Ax’dAxdAy S -

(89 _(ax) _(ay?)

47 27 27 (18

is the mean square displacement in xdirection during the
time intervalr, etc. and

One may in principle introduce an infinite set of general-
ized diffusion coefficients and use them in the terms contain- T
ing (Ax*), (Ax?Ay?), etc. in Eq.(15). However, this would Y=3 (19
require the estimation of many parameters, which would
complicate or even preclude the comparison of theory to exrespectively. We have introduceri= \/Ax?>+ Ay?. Accord-
periment. A much simpler model can be built by assuminging to Eq.(19), the relaxation time appearing in the phenom-
that all families move approximately the same distanicex  enological equatior{7) is half the mean time between two
in the x andy directions during the time intervat. Then  subsequent migrations. For the reasons explained in Sec. |,
(Ax¥y=Ax*=(Ay¥) for k=2,4, etc. Such lattice models are this microscopic interpretation is necessary in order to com-
widely used in biological applicatiori85,29, although they pare theory to experiment in the application considered. The
have not been previously applied to time-delayed reactionformer derivation is valid for an arbitrary system: one needs
diffusion. Then, Eq(15) becomes only to consider the mean time between collisions instead of
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between migrations. This can also be of interest in the analywhere, as explained below EQO), for a given order of
sis of chemically reacting systenil,22. However, such approximationN one should keep temporal and spatial de-
applications are not within the scope of the present paper. rivatives of up to ordeNN.

We are interested in determining the speed of propagation
v. A usual method is based on reducing the reaction-

B. Higher-order equations ; . . . : .
g . diffusion equation to a system of first-order differential equa-

From Eqgs.(16) and(18) we find tions and finding its eigenvalues. Ad=2 the problem thus
N ok 5 5 reduces to a second-order equatj@b]. However, this will
ST Jp_2Dr LN &_p) not hold forN>2. Thus we will use a different method: the
S1klogtk 20\ gx2 gy? existence and stability of wave fronts can be studied by con-
sidering small perturbations of the forp=exd\z] about
(2D 7)? | *p I p  dp the statep=0 [29]. We can require thax € R, since other-
41 | Ix20y? ﬁ_y“ wise we would have an oscillatory behavior wipk<0 for
some values of, which is a meaningless result. The system
K gk—1E evolves toward a stable state provided that0 [29]. This
—— (20 method is applied below to four increasingly complicated
Skl gt cases.

Equation (20) is the fundamental equation we have been
looking for: it generalizes the time-delayed reaction- A. Fisher's model

diffusion equation considered in Ref82,33 and[23-2§ Fisher's equatior(6) is recovered from the approximation
by including terms of up to an arbitrary orddr This equa- =2 [Eq. (17)] in the limit of vanishingly small delay time,
tion can be used in order to find better solutions than those_, 5 \we denote the corresponding speeoly v .. In this

following from Eq. (17). In Eq. (17), only time and spatial 556 yse op=exg\z] yields the dispersion relation
derivatives of up to second order were retained. Less ap-

proximate results will be obtained by application of E20) DA%2+v, oA+a=0, (22)
including spatial and temporal derivatives of up to ortler
>2.
and the requirement e R gives Fisher’s well known mini-
Ill. WAVE-FRONT SOLUTIONS mal speed

Wave fronts can be defined as traveling waves with con-
stant shape and speed of propagaf®8]. It is observed both vV, o=2vaD. (23
numerically and experimentally that, although a continuous
range of wave-front speeds is consistent with the stability
requirements, the system rapidly evolves toward the mini- B. Simplest time-delayed mode(N=2)
mum possible sped@9]. In the application considered here, . N
propagation of such a wave across a given geographical area W_ee?(fin)\ozt]eirt:g Eorzi%ptl)(:s&r;gtospeed\b?. Substitution
describes the immigration and establishment of farmingO P= q-
communities. Simple calculations are possible for the gener- e
alized reaction-diffusion equatiof0) if we assume that —v@)\ + T)\ZzD)\2+a
when a sufficiently long time has elapsed from the onset of
agriculture, the farmers’ wave of advance is approximately

lanar at scales much larger than that of individual migra- - . i
'ﬁons We may then chooge theaxis parallel to the Ioce?l and after finding the solutions far we find that stable wave

velocity of the wave. Lety=|v,| stand for its speedy(, fronts can only exist with speeds equal to or higher than the

1—

rv(z))\)

=0). We introduce the variable=x—vt and look for critical value

constant-shape solutions, i.e., solutions such phdépends

only onz In general, we havé&(p)=ap+b?p?+-- -, but

the migration waves of advance under consideration travel v@= 2\/a_D (24)
into areas where farming communities were previously ab- ar’

sent, so thap~0 and thusF(p)~ap. It is now easy to 1+ 2

rewrite Eq.(20) as a differential equation involving only
derivatives off with respect to the variable

with ar<2, which is the expression used in RE26]. It
No(— vk *p (2D )% 3%p generalizes Fisher's classical result and is in agreement with
2 K ok W7 recent results from the linearizatid@5] and path-integral
k=1 © 98 k=1 oz [36] methods. Here we are interested in determining whether
N Ked k1 this result can be trusted for application to human population
T(=V)"T TP is i
+a>, , (21 Wwave fronts. This is the reason we have developed a more
k=1 k! k=1 general approach that will now be applied.
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C. Higher-order solutions
Use of the same form fgo as above into Eq(21) yields

. H(—vn)k L

k! '

(—vM)* o (2DARF O
2T C& @ A
(25

which is a polynomial equation. It can be solved analytically,
e.g., in the third-order approximatioN& 3). However, the
results are rather lengthy. One may solve Exp) numeri-

cally for increasing values dfl and study their convergence / e e
with increasing\. Nevertheless, we prefer to study the exact v 2y S S R SRR e e R
solution. Its validity will be checked in the next section, by min

means of the resul5).
FIG. 1. Plot of the left- and right-hand sides of HG6). It is
D. Exact solution seen that a solution to this equation exists provided\hathigher
than a certain minimum value which will depend on the values of

In the limit N— 0, Eq. (25 can be written as the diffusive and reactive parametdds 7, anda.

=[cosh\ /ZDT)—].]. (26) IV. APPLICATION TO THE NEOLITHIC TRANSITION
IN EUROPE

(e"Vh— 1)( 1+ i
VA

It could at first sight seem possible to follow an alterna- Ammerman and Cavalli-Sforza were the first to present a

tive approach based on the diffusive analogue to(Eg..e.  scientific, testable model of one of the most important pro-
5(§,t+Y)=—Dﬁp(§€,t) and the mass balance equation.cesses in human histor}37]: the change from hunter-

Such an approach would lead to a phenomenological, ma _atherer_to agric_u_ltural _economi(jse., the Neo!ithic transi-
roscopic, time-delayed Fisher equation, but not to the micro-'on)' T_h|s transition triggered t_he _acceleratl_on of human
scopic resultg18) and (19); these results are necessary be-POPUlation growth[38]. The motivation to build a math-

causeD andY are not directly measurable: in the application ematical model of this process was the discovery that, ac-

we are interested in, what has been derived from experimerﬁc—Ording to arch.eological data, agricu!ture did not arise inde-
tal observations are the values @)/~ and = (see, e.g. pendently in different European regions. Instead, it spread

: dually[39]. Ammerman and Cavalli-Sforza proposed that
Ref. [26]). Moreover, Eq.(18) cannot be simply borrowed gra L
from Fickian diffusion, which holds near equilibrium; here Lh'? \c/)\/fasr:]?_g)aulr((ejlryge?;poceds_fsf Osf.grl:ltqzil dé?ﬁm':gggp)of
we have shown that Eq$18) and (19) hold arbitrarily far ut of physi . o diffusion, 1.€., v .
away from equilibrium. In our applicationisee Sec. IV, farmmg communities. It has been pointed out that this hy—.
(A?) is the mean square displacement per generatiorrasd pothesis is backed by the experimentally measured genetic

the generation timdin chemically reactive systems, they gradients in human populatioid0,41, as well as by the

correspond to the mean square displacement and the me%ﬁr?r:goﬁ O(r)'t%'gs?; (I)?d%'i?égfg%ﬁslﬁ)nnglf{ﬁgf;i;gﬁignce
free time between reactive collisions, respectiyeljhus a yp phy '

microscopic approach, such as that presented in Sec. I, odel was propose[#4] by making use of Fisher's equa-

necessary in order to compare the theory to experifge. ion. This is a very reasonable choice to find approximate

IV). Consistency with the classical results can be checked by esnl::tsi tbr?a(l::ul;:nogrtlgsvrfmgt“gnﬁezfm':e;?svri; ?ﬁg;iﬁgblsei:
noting that Eq.(17) has been obtained by dividing Eq. y 9 g

. S cal data is improved by taking into account that this process
.(16) n the .S‘?Cond order approxmatlon. by Acgor_d took place in two dimensior{26]. This certainly contradicts
ingly, if we divide Eq.(26) by 7 and consider the limitr o
. N : . those criticisms of the wave-of-advance model based on the
—0, we recover Fisher's dispersion Eg2), as it should be. : ; : . .
. claim that it predicts a much higher velocity for the spread of
Although Eg.(26) cannot be solved analytically, we can . . )
. . .. - agriculture as compared to that determined experimentally
show that it leads to wave fronts with a finite minimum .
velocity of propagation. In order to see this, in Fig. 1 we plot[45,46]. The role of second-order terms has also been dis-
the functions on the left- and right-hand sides of E26). cussed recentl{26]. In this context, it is very important to

) explain how the values of the parameters, used in Réi,
For given Va'”‘?s ok, D, and 7, the RHS .has the shape were derived from anthropological observations. We think
shown in the figure. Then, to each possible value of th

reaction (or growth) parametera there will correspond a his point requires a very brief discussion here, so that the
g gre P o ponc reader can judge the scientific character of the application
minimum possible value of the velocity, since the require-

mentA <0 implies that the LHS of Eq(26) increases with considered. Such values will then be applied to the equations

increasingv: the functions on the LHS and RHS will cer- '([:ihear::/?ﬁa??nméee,fgg])rder o present a more rigorous analysis

tainly not cross for low enough values wf Thus for given
values of the parameters, a real solution to 26) will exist
only for speeds above minimum value, in complete analogy
to the Fisher and hyperbolic results obtained above by the As explained in Sec. Ill, when the first farmers arrive in a
same method. geographical area, the population density is very snpall,

A. Determination of the values ofa, D, and = from field data
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0.04 F ]
L FIG. 2. This figure shows the predictions

F ] taking into account infinite higher-order terms
/// i ////// / in the mathematical modékee Eq.(26)]. By
003 Z, contrast, Fig. 2 in Ref[26] was obtained by

n including only terms of up to second order. The
hatched rectangle gives the values for the reac-
tion and diffusion parameters(@andD, respec-
tively) implied by independent observations.
The curves give the values afandD for wave-
front velocities of 0.8 km/yr, 1.0 km/yr, and
1.2 kmlyr, according to the model derived in
the text. Since the velocity inferred from ar-
chaeology is 1.80.2 kmlyr, there is good
agreement between theory and experiment.

.
S
S
S

a (yr

0.01 |-

ool 00 L P R
0 500 1000 1500 2000 2500 3000
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~0, and the growth function iE~ap. It means that, in the use of the mean values far D, and = given above in Fish-
absence of migrations, the initial evolution of the populationer’s velocity (23) givesv,_,,=1.41 km/yr. Use of the same
density will follow the approximate lawdp/dt=ap [see, values in the hyperbolic equatidi24), which was used in
e.g., Eq.(6)], which corresponds to an exponential growth. Ref.[26], yieldsv(?=1.00 km/yr. This value is completely
The value ofa cannot be derived from archeological datawithin the experimental range, but we note that the differ-
because they do not reach such a level of detail. Howevegnce with respect to Fisher's result is higher than 40%. Such
plausible values fom can be inferred from observations of g |arge difference makes it necessary to use the results in the
populations that settled in empty areas. Birdsell was able t§,osent paper in order to determine whether or not the
collect such data from the 18th century on the island Ofgg 0 order approximatiarf?) can be trusted. The point is
P|tca|rn(.East of Chilg gnd also from the .19th century on Fhe thus to analyze the role of the terms involving derivatives of
islands in Bass Straitbetween Australia and Tasmahia order higher than the second in E@J). In order to do so,

What is impressive about these data is that a plot of the e use the same values afD. andr as those given above
population size versus the generations of elapsed time give arb, ’ 9

almost exactly the same curve in both calg . Combin- in the exact solution26). After solving this equation nu-

ing this result with a mean generation time of 25 yr one find%Tn%rlca_"% g]8th|fmr??nq_irlj§xv€f'2:s ;Ea?(?[ﬁé“sle&::r(])drlg-g dﬁrV\r/:-
a value of a=0.032+0.003 yr !, with 80% confidence Vo yr

level An estimation for the diffusion coefficienD sult vi<’ is very similar to the exact one, and both of them

— (A?)/47 [see Eq.(18)] can also be made from anthropo- yield a wave-front velocity that lies completely within the

logical data of the mobility of Ethiopian shifting agricultur- experimental rang¢l.0-0.2 km/yp. This shows that the

alists and Australian aborigines. The corresponding value?ygg:]t;?;';\;gl?ﬁgyélz;g;cgf sgIgcri?yass)or;\?rt])ifhar?:rﬁaxétmsiﬂzn’
[44,48 yield a mean square displacement per generation of! ' 9

(A?)/7=1544+ 368 knf/generation, with 80% confidence role of th_e time delay, for the application and parameter val
o . ues considered here. For the sake of completeness, we men-
level. The parameter [which is twice the phenomenological _. ) .

b ) o .~ tion that in fact one can also obtain the resuit
delay time; see Eq19)] is more difficult to measure. As in —0.98 kmiyr by solving Eq(25) numerically for increasin
Refs.[49] and[26], we assume that it can be approximated - .y y ng =9 y asing

values ofN: the solutions are seen to converge rapidbr

to the mean generation time. This corresponds to one m'grap_xample, the approximatiok=4, which corresponds to in-

tion per generation, although we would like to stress tha luding derivati f to fourth ord readv vield

future archeological observations could be very useful in deg(ﬂ)'_ng erivatives ol up to tourth order, aiready yields

termining to what extent this is a realistic estimate: the use o =0.98 kmiyy. Hovyever, we think that the procedure

manure and crop rotation avoids having the land becomin ased on t_he appllcatlon Of. the-(_)rde_zr Eq.(2_6) shoulc_i be

exhausted50], but in case early agriculturalists did not use ore prag:ﬂcal_ in general, since It W'” c_erta|r_1ly require less

these techniques, then the value ofcould certainly be computation time for possible applications in which many
rms could be necessary.

maller than the mean generation time. In the present e .
\?veawieil usz a rﬁeaﬁage?]Zr:tignOtime ;:25 y?[azas?rhisape " Because the calculations above have been performed for
completes our brief discussion on the parameter values uséﬁe mean valges of_the _react|on and diffusion paramegers,
in Ref. [26]. We apply them below to the theory developed andD resp_ectlvely, it is important to analyze the_ res_ults for
other possible values. These results are shown in Fig. 2. We

in the preceding sections. see that there is good agreement between theory and experi-
ment, and that this figure is very similar to Fig. 3 of Ref.
[26]. This result is important because Fig. 2 in the present
The archeological data on the earliest recorded farmingaper has been obtained by including an infinite number of
settlements in Europe yield a rate of advance for the exparterms, whereas Fig. 3 of Ref26] corresponded to the
sion of the farming communities of 1200.2 km/yr[39,44] second-order approximation. Comparing both figures, we
(see, e.g., Fig. 1 and the discussion in R26]). By contrast, also note that use of all higher-order terms yields a slightly

B. Comparison to observations
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lower wave-front velocity than that corresponding to thepopulation expansior{26]. However, it was also shown that
second-order equatiof24). This velocity is, in turn, lower the corrections with respect to the classical, parabolic ap-
than Fisher’s resulf23), which neglects any possible effect proach(based on Fisher's equatipoan be relevant indeed
of the time delay on the evolution of the system. [26]. Thus the validity of a hyperbolic, second-order ap-
We have seen that the approach reported shows that thgroach used was not clear. Here we have developed a model
hyperbolic model presented in R¢R6] is a reasonable ap- that allows one to include terms of up to an arbitrarily high
proximation. This can be relevant from two points of view: order. We have shown how an infinite number of such terms
(i) it shows that the hyperbolic wave-front velocit94) is  can be taken into accoufisee Eq.(26)]. We have applied
rather accurate in the application here consider@d;it  this to perform estimations of the velocity of spread of the
opens the way to a more general approach to chemicallileolithic expansion in Europe. The results obtained are in
reactive systems, a case in which it is very important togood agreement with the empirical evidence from archaeol-
understand the propagation speed of wave frés¢®, e.g., ogy and anthropology that is available at present. This gen-
Refs.[21,22). Finally, it is worth mentioning that we have eralizes previous models of time-delayed reaction-diffusion

here derived and analyzed linear equations, i.e., [24-24, [36] and puts them on a more rigorous basis.
Before closing, we would like to mention that there are
F(P,Pt Pty - - - Px: Py Pxy: Pxx:Pyy Pxy: - - -) =0, several additional fields of application of the results here

where E is a linear function in etc. [51], but the reported. On one hand, chemically-reacting systems
method in Sec. Il also applies t[c))' s%tn’we nenlinear equation$21.’2.2.’53.'Sali supercondgctq@S],.liquid crys.tals[5_6], an_d
For example eonsider the time-delayed equation Solidification[57] are topics in which extensive simulations
' are being performed in order to determine wave-front veloci-
ap #p #p op)\2 JE ties: the m_eth(_)ds presented here could be a useful analytical
Y (_) +F+Y —, (27) approach in situations such that the effect of a delay time
d could be important. On the other hand, here we have focused
_ _ ) our attention on the Neolithic transition in Europe simply
which, neglecting the delay time((~0), has been proposed pecause the quantity of archeological observations is higher
in the analysis of the profile evolution of a growing interface , this case than for other human expansions. However, there
in solidification and_ crystallizat_ion process_ESQ]. The sec- s evidence that similar processes took place in Afffal,
ond term on the right-hand side is nonlinear, ands a  America[59], Polynesig60], and Ching61]. The approach
parameter related to nonlocal effects; without this nonlineagye nave presented should, in our opinion, be applied to these
term we recover the hyperbolic equatit®) in one dimen-  expansions as soon as sufficient and reliable empirical data
sion. It is simple to follow exactly the same steps as in Secpecome available. Finally, we stress that the model presented
IIl, but in this case the exponentials do not cancel out. Thugs not restricted to a specific system and could thus be useful
the linearization method does not yield a lower bound for thg, the study of animal and plant expansidie&] and other
speed of the front. It would be interesting to apply variationalbiophysica| topics in which reaction-diffusion is of utmost
work. We do expect, however, that the delay time will affethonduction[29,61ﬂ, cellular sensitivity[64], growth of bac-

the speed of fronts even in the nonlinear case, which doegyia| colonieg65], and models of mitochondrial tiss{i@6].
not apply to the problem analyzed in the present paper but

may be relevant in other applications.
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